martes, 10 de junio de 2014

Diamante

Brillanten.jpg

En mineralogía, el diamante (del griego antiguo αδάμας, adámas, que significa invencible o inalterable) es un alótropo del carbono donde los átomos de carbono están dispuestos en una variante de la estructura cristalina cúbica centrada en la cara denominada «red de diamante». El diamante es la segunda forma más estable de carbono, después del grafito; sin embargo, la tasa de conversión de diamante a grafito es despreciable a condiciones ambientales. El diamante tiene renombre específicamente como un material con características físicas superlativas, muchas de las cuales derivan del fuerte enlace covalente entre sus átomos. En particular, el diamante tiene la más alta dureza y conductividad térmica de todos los materiales conocidos por el hombre. Estas propiedades determinan que la aplicación industrial principal del diamante sea en herramientas de corte y de pulido además de otras aplicaciones.
El diamante tiene características ópticas destacables. Debido a su estructura cristalina extremadamente rígida, puede ser contaminada por pocos tipos de impurezas, como el boro y el nitrógeno. Combinado con su gran transparencia (correspondiente a una amplia banda prohibida de 5,5 eV), esto resulta en la apariencia clara e incolora de la mayoría de diamantes naturales. Pequeñas cantidades de defectos o impurezas (aproximadamente una parte por millón) inducen un color de diamante azul (boro), amarillo (nitrógeno), marrón (defectos cristalinos), verde, violeta, rosado, negro, naranja o rojo. El diamante también tiene una dispersión refractiva relativamente alta, esto es, habilidad para dispersar luz de diferentes colores, lo que resulta en su lustre característico. Sus propiedades ópticas y mecánicas excelentes, combinadas con una mercadotecnia eficiente, hacen que el diamante sea la gema más popular.
La mayoría de diamantes naturales se forman en condiciones de presión y temperatura extremas, existentes a profundidades de 140 km a 190 km en el manto terrestre. Los minerales que contienen carbono proveen la fuente de carbono, y el crecimiento tiene lugar en períodos de 1 a 3,3 mil millones de años, lo que corresponde a, aproximadamente, el 25% a 75% de la edad de la Tierra. Los diamantes son llevados cerca de la superficie de la Tierra a través de erupciones volcánicas profundas por un magma, que se enfría en rocas ígneas conocidas como kimberlitas y lamproitas. Los diamantes también pueden ser producidos sintéticamente en un proceso de alta presión y alta temperatura que simula aproximadamente las condiciones en el manto de la Tierra. Una alternativa, y técnica completamente diferente, es la deposición química de vapor. Algunos materiales distintos al diamante, incluyendo a la zirconia cúbica y carburo de silicio son denominados frecuentemente como simulantes de diamantes, semejando al diamante en apariencia y muchas propiedades. Se han desarrollado técnicas gemológicas especiales para distinguir los diamantes sintéticos y los naturales, y simulantes de diamantes.

Yacimientos
India, Namibia, Sierra Leona, Brasil, Colombia, Venezuela, México, Perú, Australia, Estados Unidos, Ghana, Sudáfrica.

Corindón

CorindonEZ.jpg

El corindón (del sánscrito korivinda) es un mineral del grupo IV (óxidos) según la clasificación de Strunz. Está formado por óxido de aluminio(Al2O3).

Características
Se encuentra en la naturaleza bajo la forma de cristales; normalmente, en pegmatitas, anfibolitas, peridotitas, gneis o mármoles, y menos comúnmente en rocas volcánicas. En forma amorfa, aparece como escoria en el proceso de unión de rieles de ferrocarril mediante soldadura aluminotérmica.
Cristaliza en el sistema trigonal, formando cristales hexagonales prismáticos, tabulares, bipiramidales o toneliformes (con forma de tonel). Es de tenacidad frágil y apenas tiene exfoliación; su fractura es concoidea y es el segundo con respecto a su dureza después del diamante en la escala de Mohs.
Se presenta en una gran variedad de colores atendiendo a las impurezas que tenga: incoloro, blanco, pardo, violeta, verde, amarillo, azul o rojo, por ejemplo. Su brillo es vítreo.
El rubí debe su color rojo a la presencia de una cantidad mínima de óxido de cromo en su composición, mientras que el zafiro debe su color azul al óxido de titanio.

Usos
La variedad roja conocida como rubí y la azul conocida como zafiro, se consideran piedras preciosas. La variedad opaca, granuda y de color gris oscuro del corindón se denomina esmeril y es empleada en la industria.
La calidad de gema del corindón se usa en joyería, pero también existen calidades inferiores que se utilizan para hacer objetos decorativos como esculturas.
Además es muy efectivo usado en el granallado con arena (enarenado) para la preparación superficial del acero, grabado artístico de cristales y realización de bajorrelieves. Con agua, puede cortar metales proyectándola a alta presión.

Yacimientos
Alemania, Estados Unidos, Japón, Turquía, Grecia y Argentina.

Topacio

Topaze Brésil.jpg

El topacio es un mineral del grupo VIII (silicatos), según la clasificación de Strunz. Su nombre deriva, según Plinio el Viejo, de la isla Topazosque se halla en el Mar Rojo. Sin embargo, los yacimientos de esta isla son de olivina, frecuentemente confundida con el topacio.
Es un aluminosilicato de fórmula química Al2SiO4(OH, F)2, indicando el paréntesis alrededor de OH y F que la proporción entre fluoruros (F) e hidróxidos (OH) puede variar en un amplio rango, aunque su suma siempre será constante.
Se utiliza a menudo como piedra preciosa y algunas veces ha sido confundido con el diamante: el llamado Diamante de Braganza, incluido como diamante en la corona portuguesa, es un topacio.
Su densidad es de 3,5 - 3,6 g/cm³, el color generalmente es amarillo-amarronado; sin embargo, a menudo se pueden encontrar ejemplares con tonos de ocre, azul, violeta, rojo o, incluso, incoloro. Además, puede ser variado fácilmente con medios artificiales: aplicando rayos gamma o haces de electrones se consiguen tonalidades pardas o ligeramente verdosas y calentándolo se obtienen tonalidades azules o rojizas. Desde el siglo XIX es posible calentar el topacio incoloro y darle un color amarillo claro.
En la escala de Mohs le corresponde dureza de 8. Sin embargo, fractura fácilmente y por esta razón es difícil de trabajar.
Comercialmente se intentan vender algunas variedades de cuarzo con denominación de topacio.

Yacimientos
Se encuentra habitualmente en forma de cristales prismáticos crecidos en huecos que están unidos con la roca madre. Además existe una variante masiva o granulosa.
Algunos de los yacimientos más importantes se encuentran en República Checa, Brasil, Sajonia, Noruega, Suecia, Japón, México, Sri Lanka,Birmania, Pakistán y los Estados Unidos.

Cuarzo

Quartz, Tibet.jpg
El cuarzo es un mineral compuesto de sílice (SiO2). Tras el feldespato es el mineral más común de la corteza terrestre estando presente en una gran cantidad de rocas ígneas, metamórficas y sedimentarias. Se destaca por su dureza y resistencia a la meteorización en la superficie terrestre.
Estructuralmente se distinguen dos tipos de cuarzo: cuarzo-α y cuarzo-β. La amatista, el citrino y el cuarzo lechoso son algunas de las numerosas variedades de cuarzo que se conocen en la gemología.
Los usos que se le dan a este mineral varían desde instrumentos ópticos, a gemas, placas de oscilación y papel lija.

Química, estructura y propiedades
El cuarzo es un mineral compuesto de sílice (SiO2). Pertenece a la clase 4 (óxidos) en la clasificación de Strunz. A pesar de estar compuesto principalmente de sílice el cuarzo puede tener impurezas de litio, sodio, potasio o titanio. No es susceptible de exfoliación. Tiene una dureza de grado 7 en la escala de Mohs de manera que puede rayar los aceros comunes.
Existen dos formas de cuarzo según su estructura: cuarzo-α y cuarzo-β. El cuarzo-α o bajo cuarzo es estructura trigonal y puede existir hasta temperaturas de 573 °C. Sobre dicha temperatura el cuarzo-α se transforma en cuarzo-β o alto cuarzo que es de estructura hexagonal. A temperaturas sobre 867 °C el cuarzo-β se transforma lentamente en tridimita, otro mineral de sílice.
El cuarzo tiene propiedades piezoeléctricas cuando se le aplica presión o tensión. Además tiene propiedades piroeléctricas.

Variedades

Existen numerosas variedades de cuarzo; entre ellas esta el cristal de roca, el cuarzo blanco o lechoso, el cuarzo café, el cuarzo ahumado, el citrino, la amatista, y los cuarzos rosados, azules y verdes. Los cuarzos criptocristalinos constituyen una serie de variedades que destacan por carecer de cristales visibles. Estos incluyen la calcedonia, la crisoprasa, la calcedonia de cromo, el ágata, y el jaspe.

Cristal de roca
El cristal de roca es una variedad de cuarzo que es transparente y "valorada por su claridad y falta de defectos de coloración". El cristal de roca ha sido usado en el pasado como gema pero en la actualidad ha sido reemplazado en gran medida por perlas de vidrio y plástico.

Ortoclasa

OrthoclaseBresil.jpg

La ortoclasa u ortosa es un mineral de la clase 9 (silicatos), subgrupo tectosilicatos, y dentro de ellos pertenece a los feldespatos, según la clasificación de Strunz. Con fórmula química KAlSi3O8. Es uno de los minerales formadores de las rocas más abundantes en la corteza terrestre. También se conoce con el nombre de feldespato o feldespato ortosa, pero estos nombres no son del todo correctos, ya que no definen al mineral sino a un grupo de minerales del que la ortoclasa forma parte.

Características
Se trata de un mineral, en las que aparece en forma de granos redondeados o en secciones de cristales bien formados. Cuando cristaliza lo hace en prismas columnares, a veces de gran tamaño, que incluso pueden llegar a alcanzar varias toneladas de peso. Son comunes las maclas (agregados geométricos) de dos cristales y, entre ellas, las más habituales son las de Baveno-Manebach, en los cristales prismáticos, y la de Carlsbad, formada por dos cristales tabulares.
El color característico de la ortoclasa es el rosa carne, más o menos intenso, pero también puede ser blanca, gris, rojiza o, más raramente, amarilla o azul.

Usos
Los antiguos chinos ya conocían el valor de la ortoclasa como fundente en la fabricación de cerámicas, tal como lo atestiguan algunos objetos datados varios milenios antes de Cristo. En la actualidad, la utilización de la ortoclasa dentro de la industria de las porcelanas abarca campos amplísimos: desde la elaboración de objetos tanto de uso artístico como doméstico, hasta la fabricación de aislantes eléctricos, pastas odontológicas, vidrios especiales y esmaltes cerámicos.
Al formar parte de muchas rocas empleadas como material de construcción, ya sean granitos o gneises, se encuentra en los bordillos de las aceras y otros tipos de empedrado, y se utiliza asimismo en los revestimientos de fachadas y en las superficies de trabajo de cocinas, obradores o laboratorios.

Apatita

Apatite crystals.jpg
La apatita o apatito es un mineral con cristales hexagonales y dureza 5 en la escala de Mohs. Su composición química aproximada es Ca5(PO4)3(F,Cl,OH). El color es variable aunque predominan los cristales incoloros, de color parduzco o verdoso.

Yacimientos
La apatita se encuentra en vetas hidrotermalespegmatitas y caliza metamórfica además de sedimentos donde se produce a partir de depósitos orgánicos.

Variedades
  • Fluoro-apatita (Ca5(PO4)3F); es el principal mineral del esmalte de los dientes. Resiste mejor los ataques de los ácidos que la apatita normal. Por esto se añaden fluoruros a las pastas de dientes que pueden intercambiar los grupos hidroxilo por flúor.
  • Hidroxi-apatita (Ca5(PO4)3OH); el principal mineral de los huesos. Se puede fabricar artificialmente según el proceso de Tiselius a partir de cloruro de calcio (CaCl2 y fosfato de disódio (Na2HPO4) y se utiliza en la separación cromatográfica de las proteínas.

Usos
La apatita es la principal fuente de fósforo y fosfato y por lo tanto es imprescindible en la fabricación de los abonos minerales.

Fluorita

FluoriteBerbes.jpg

La fluorita (también denominada espato flúor o fluorina ) es un mineral del grupo III (halogenuros) según la clasificación de Strunz, formado por la combinación de los elementos calcio y flúor, de fórmula CaF2 (fluoruro de calcio). Este mineral se presenta con hábito cúbico,cúbicooctaédricorombododecaédrico. Desplegando una estructura cristalina en el sistema cúbico. Es un mineral que presenta propiedades físicas de termoluminiscencia y fluorescencia (a los rayos ultravioleta). En la industria es empleado como fundente en la fundición de hierro y del acero. Se emplea igualmente como fuente de flúor y ácido fluorhídrico en la cerámica y en los vidrios ópticos.

Características
Es un mineral que posee una escala de dureza Mohs 4 (se puede rayar con un cuchillo de acero). La fluorita es una fuente importante industrial del flúor. Su uso como fundente es ya descrito por Agrícola en 1529 y sus propiedades fluorescentes por el naturalista alemán Elsholtz en 1676. George Gabriel Stokes fue uno de los científicos que describió la fluorescia en relación con la fluorita, ya en 1852. Las propiedades para carcomer el vidrio cuando se mezclaba con ácidos fue descubierta por un fabricante de anteojos alemán en pleno siglo XVIII. Su uso en la industria metalúrgica hace que se emplee en los altos hornos con el objeto de reducir la viscosidad de la escoria en la metalurgia del hierro. El nombre de fluorita deriva del latín fluere que significa fluir, indicando su uso ya en su metalurgia.
Es descrita la fluorita en el año 1530 en la obra De re metallica por Bermannus. Siendo una de las primeras referencias. Se presenta a menudo asociada a otros minerales como el cuarzo o la calcita. La fluorita posee una propiedad denominada conductividad aniónica, íntimamente ligada a las propiedades de su estructura cristalina, que permite circular aniones. Otros compuestos químicos similares por su apariencia exterior se denominan en algunas ocasiones fluorita, algunos casos son como el compuesto BaSO4 (Sulfato de Bario) se denomina igualmente fluorita pesada y la fluorita selenítica que es CaSO4 (Sulfato de Calcio).

Usos
El ácido fluorhídrico procedente de la fluorita se utiliza en la elaboración de un gran grupo de sustancias. La fluorita es empleada como una fuente de flúor que puede emplearse, por ejemplo, en la fluoración del agua potable. Se emplea como material pétreo en las obras lapidarias. También se emplea en colgantes, broches o aretes.